skip to main content


Search for: All records

Creators/Authors contains: "Chugg, Keith M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This paper proposes a novel foreground lineariza- tion scheme for a high-speed current-steering (CS) digital-to- analog converter (DAC). The technique leverages neural networks (NNs) to derive a lookup-table (LUT) that maps the inverse of the DAC transfer characteristic onto the input codes. The algorithm is shown to improve conventional methods by at least 6dB in terms of intermodulation (IM) performance for frequencies up to 9GHz on a state-of-the-art 10-bit CS-DAC operating at 40.96GS/s (gigasamples-per-second) in 14nm CMOS. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Artificial neural networks (NNs) in deep learning systems are critical drivers of emerging technologies such as computer vision, text classification, and natural language processing. Fundamental to their success is the development of accurate and efficient NN models. In this article, we report our work on Deep-n-Cheap—an open-source automated machine learning (AutoML) search framework for deep learning models. The search includes both architecture and training hyperparameters and supports convolutional neural networks and multi-layer perceptrons, applicable to multiple domains. Our framework is targeted for deployment on both benchmark and custom datasets, and as a result, offers a greater degree of search space customizability as compared to a more limited search over only pre-existing models from literature. We also introduce the technique of ‘search transfer’, which demonstrates the generalization capabilities of the models found by our framework to multiple datasets. Deep-n-Cheap includes a user-customizable complexity penalty which trades off performance with training time or number of parameters. Specifically, our framework can find models with performance comparable to state-of-the- art while taking 1–2 orders of magnitude less time to train than models from other AutoML and model search frameworks. Additionally, we investigate and develop insight into the search process that should aid future development of deep learning models. 
    more » « less
  4. The high computational complexity associated with training deep neural networks limits online and real-time training on edge devices. This paper proposed an end-to-end training and inference scheme that eliminates multiplications by approximate operations in the log-domain which has the potential to significantly reduce implementation complexity. We implement the entire training procedure in the log-domain, with fixed-point data representations. This training procedure is inspired by hardware-friendly approximations of log-domain addition which are based on look-up tables and bit-shifts. We show that our 16-bit log-based training can achieve classification accuracy within approximately 1% of the equivalent floating-point baselines for a number of commonly used datasets. 
    more » « less
  5. The high energy cost of processing deep convolutional neural networks impedes their ubiquitous deployment in energy-constrained platforms such as embedded systems and IoT devices. This article introduces convolutional layers with pre-defined sparse 2D kernels that have support sets that repeat periodically within and across filters. Due to the efficient storage of our periodic sparse kernels, the parameter savings can translate into considerable improvements in energy efficiency due to reduced DRAM accesses, thus promising significant improvements in the trade-off between energy consumption and accuracy for both training and inference. To evaluate this approach, we performed experiments with two widely accepted datasets, CIFAR-10 and Tiny ImageNet in sparse variants of the ResNet18 and VGG16 architectures. Compared to baseline models, our proposed sparse variants require up to ∼82% fewer model parameters with 5.6× fewer FLOPs with negligible loss in accuracy for ResNet18 on CIFAR-10. For VGG16 trained on Tiny ImageNet, our approach requires 5.8× fewer FLOPs and up to ∼83.3% fewer model parameters with a drop in top-5 (top-1) accuracy of only 1.2% ( ∼2.1% ). We also compared the performance of our proposed architectures with that of ShuffleNet and MobileNetV2. Using similar hyperparameters and FLOPs, our ResNet18 variants yield an average accuracy improvement of ∼2.8% . 
    more » « less
  6. The high demand for computational and storage resources severely impedes the deployment of deep convolutional neural networks (CNNs) in limited resource devices. Recent CNN architectures have proposed reduced complexity versions (e.g,. SuffleNet and MobileNet) but at the cost of modest decreases in accuracy. This paper proposes pSConv, a pre-defined sparse 2D kernel based convolution, which promises significant improvements in the trade-off between complexity and accuracy for both CNN training and inference. To explore the potential of this approach, we have experimented with two widely accepted datasets, CIFAR-10 and Tiny ImageNet, in sparse variants of both the ResNet18 and VGG16 architectures. Our approach shows a parameter count reduction of up to 4.24× with modest degradation in classification accuracy relative to that of standard CNNs. Our approach outperforms a popular variant of ShuffleNet using a variant of ResNet18 with pSConv having 3 × 3 kernels with only four of nine elements not fixed at zero. In particular, the parameter count is reduced by 1.7× for CIFAR-10 and 2.29× for Tiny ImageNet with an increased accuracy of ~ 4%. 
    more » « less